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An investigation of strong and weak discontinuities in magneto-hydro- 
dynamics is contained in a series of papers and books (see, for instance, 
[ l-4 I 1. In the following, the equations of planar flow in a magnetic 
field parallel to the velocity field are transformed under certain 
initial restraints to a linear equation of the Cbaplygin type [5 1. We 
will apply the result to a problem in which there are no strong discon- 
tinuities. 

'lhe equations of the steady motion of a gas with infinite conductivity 
in a magnetic field have the following form: 

gradp 1 
divH=O, rot(WXB)=O, divpW=O. (WsV)W=---- 

%J 
HxrotH (1) 

where FI is the magnetic field strength, p, p and W are respectively the 
pressure, density and vector velocity of the flow. If the flow is planar 
and the vector E lies in the plane of the flow, it follows from the 
second of Equations (1) that W x II = const. If W 11 E at one point, then 
W 11 Ii throughout the flow field. One can write 

H=k(w, Y) PW (2) 

where k(x, y) is the coefficient of proportionality. 

From the first and third equations of the system (1) mu! conclude that 
k(x, yl = const along a streamline. 'lhe vector fI 2 rot H is perpendicular 
to the streamline. Therefore, the Bernoulli formula 

dp 
wdw+p=o 

is correct along streamlines. 

let us assUnep= p@) and let formula (31 be correct in any direction 
in the region of flow. We will also consider subsequently that k = const 
throughout the flow, which obtains in particular for the undisturbed 
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parallel flow at infinity. On the basis of (3) we have 

P = P (4‘ p=-- p(w)wdw 
f 

from which there follows 

$- grad p = - grad T 

On the other hand, fW.V) W = rot W x W + grad ‘1% Wz. 
last equation of the system (1) reduces to the form 

rotWxW=- -+kotH 

(4) 

(5) 

There fore, the 

(6) 

Projecting Equation (6) on to the coordinate axes x, y and taking 

formula (2) into account, we obtain 

u* = w* cos 6, v* == we sin 0, w’=l”(l-&) 

and 6 is the angle of the velocity vector with the abscissa. 

The existence of a stream function +4(x, yl 

34 
-=21 

3X - ‘p (w) z.G - v*p* W), $- = up (w) =N*p*(W*) ( p’” 1 _ :zp’&) (9) 

follows from the continuity equation. 

Equation (‘7) permits a fictitious potential Q, to be introduced in 

accordance with the formula 

alp - - a* 39 
as- ’ 

- ~ V* 
&I 

As is well-known from the equations of total differential 

cos 8 sin d+, dy = 
sine CDS 0 

dx = -r-dq- -d?-+ -ddJ, 
W P w W* pY 

(10) 

expressions 

(11) 

one can derive the following system of equations for the unknown function 

C$ and JI: 

‘She system (12) has the canonical form 

where the functions of the velocity dlK and s are related to w* and p* in 



On a solution to the equationr 

accordance with (61 by the formulas 

fdQ 
z-= - JfRP, Q=l/gg 

hence 
P' (d) Q' (to*) % 

ds = 
P (w*) Q (w*) dw8’ 

yT= ( 
Q (w*) Q’ (to*) ?‘* 

P (to*) P’ (u;) 

of mgncto-gosdynoaict 

Substituting expressions for the functions Pb*) and QdP*) into 
and taking into co&&ration formulas (8) and (9) and the formula 
determining the velocity of sound 

dp WP (4 p=.---=-- 
dp P' (WI 

we obtain 
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(14) 

(15) 

(15) 
for 

(16) 

where Y is t;he Mach n&r. 'lhe negative sign in (1'7) is t&en for the 
interval of variation of w in which dw*/ds < 0. For imaginary values of 
s and4 K we have the hyperbolic system of equations 

In the case p = constpK, where K is the ratio of specific heat 
coefficients, formulas (17) and (21) take the form 

W=( (1 - A’) [ 1 - kl(1 - h’/ky]s J % 
(I-Ayhyql -k1(1 --P/k~)~(1-W)] , 

where X is the magnitude of the relative velocity and a* is the critical 
velocity of sound. If k, < 1, the system (13) is correct for A < 1 and 
the system (18) is correct for X > 1. lhe case k, > I is of greater 

interest. ‘Ihen the quantities 

1- kl (1 - W) (1 - As/hs)y, 1- kI (l - A*/P)Y 

which are negative in the neighborhood of X = 0 vanish respectively for 
A, < 1 and X2 = h(l- k,‘-K), where A, > A,. In the interval of velo- 
city variation O<A < A, we have for every A, the elliptic system of 
equations (13). If X, < 1, we have for the subsonic interval A, < X < A, 
the-hyperbolic system of equations (181, and subsequently for the interval 
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A, C X < 1 the elliptic system of equations (131, and finally for A > 1 
again the system (181. If X, > 1, the system (18) is correct for the 
intervals A, < A < 1 and A, < h < h, and the elliptic system of equations 
(131 for the supersonic interval 1 < X < A,. If 

the system (13) is correct for the whole interval h,<X< h. 

Extracting the principal parts of the fonaulas (191 in the nei&hor- 
hood of the si yiar 
dK= const s- 

points X, and X, f 1, we find that in the first case 
and in the second case \/Itconst s, where s is to be- 

computed respectively for A, and A,. 

For tr = 0 we have the usual equations of Cbaplygin. For separate form 
ulas p = p@ 1 and values k 1 a system of equations in Legendre functions 
can be found which are more convenient for solution than the system (13). 

We will pass from the functions 4, JI to the functions @, V by means 
of the legendre transformation 

x= a+=-+, y=CD,* =‘y, 
( 

CO8 0 sin 0 
r=-, t=- 

Q Q ) (21) 

In the independent variables s, 8 the system (211 has the following 

form (see, for instance, 1.7 I 1 

Approximate and exact methods of solution of the Qmplygin equations 
csn be used for the solution of problems of a given flow of gas in s 
magnetic field. For the ~p~~ti~s one must use a closure condition. 
For instance, if in the order of the approximation scnne other function 
f(s 1 is tahen instead of the rigorous dependence on d Kb 1, after sub- 
stituting the fnnction f(s 1 in place of v’ K in Equation (141 we obtain 
an equation for determining the functions Pts 1 and Q(s). We obtain the 
dependence of p on o in the paraeiletric form p = p(s), w = O(S) by ~l(flt~s 
of the fonnulas 10* = P- ‘, p* = P/Q and the fowulas (81 and (9). 
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