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An investigation of strong and weak discontinuities in magneto-hydro-
dynamics is contained in a series of papers and books (see, for instance,
[1-41). In the following, the equations of planar flow in a magnetic
field parallel to the velocity field are transformed under certain
initial restraints to a linear equation of the Chaplygin type [5]. We
will apply the result to a problem in which there are no strong discon-
tinuities.

The equations of the steady motion of a gas with infinite conductivity
in a magnetic field have the following form:
grad p 1

divH=0, rot (WX H)=0, divpW =0, (W.V)W=—""10 —

HxrotH (1)

where H is the magnetic field strength, p, p and W are respectively the
pressure, density and vector velocity of the flow. If the flow is planar
and the vector H lies in the plane of the flow, it follows from the
second of Equations (1) that W x H = const. If W|| H at one point, then
Wl H throughout the flow field. One can write

H=k(z, y) pW 2)

where k(x, y) is the coefficient of proportionality.

From the first and third equations of the system (1) we conclude that
k(z, y) = const along a streamline. The vector H X rot H is perpendicular
to the streamline. Therefore, the Bernoulli formula

dp
wdw + = 0 3)
is correct along streamlines.

Let us assume p = p(p) and let formula (3) be correct in any direction
in the region of flow. We will also consider subsequently that k = const
throughout the flow, which obtains in particular for the undisturbed
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parallel flow at infinity. On the basis of (3) we have
p=pw)  p=—{pudw (4)
from which there follows

w?

1
ry grad p = — grad —~ (5)
On the other hand, (W.V)W =rot W X W + grad }/, W2, Therefore, the
last equation of the system (1) reduces to the form
1
rothW::w—z;;eroLH (6)

Projecting Equation (6) on to the coordinate axes x, y and taking
formula (2) into account, we obtain

9 Bu (39:) éﬂ‘) F*  Gu* .
-3; - ¢)J [&17 or dy /)’ nan 9z —aT/. — (7)
where
- s * . . . 32
u =w cos 8, v ==w sin @, w-:*”(i“én") {8}

and 0 is the angle of the velocity vector with the abscissa.

The existence of a stream function ¥(x, y)

oy -

e
T =P (w)y=—vp 1= A-?'p/lm) ®)

TN
e~
-

a
) o= e () = ')

follows from the continuity equation.

Equation (7) permits a fictitious potential ¢ to be introduced in
accordance with the formula

il * a‘P .
‘a—::u, -0;::” (10}

As is well-known from the equations of total differential expressions

9 in® ino s0
do =52 g0~ E27 4y, dy =222 go L ol gy (11)
w pw w pu

one can derive the following system of equations for the unknown function

¢ and yn

o _w_ 0y f’@,.d< ! )?_i (12)
a9 ot aw ¥ g\ w99
The system (12) has the canonical form
? ST B &
ae"V o =—VK35 (13)

where the functions of the velocity K and s are related to »* and p* in
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accordance with (6) by the formulas

R-vEr. o=VFE  (P=vho=6w)y)  w
hence
. ( P’ (') Q' (w') )"' &', VE= (M)% (15)
T\Pehew) ’ S\ PE)PEY

Substituting expressions for the functions P(»*) and Q(»*) into (15)
and taking into consideration formulas (8) and (9) and the formula for
determining the velocity of sound

d
a=F 20 (16)
we obtain
1 (4 — M%) (1 — mp)"\s (1 — M2) [1 — mp (1 — M2)] \Ysdw
VK= T(m) » de=ch ( T—mp )  (m =k?/hm)

where M is the Mach number. The negative sign in (17) is taken for the
interval of variation of w in which dv*/ds < 0. For imaginary values of
s and y K we have the hyperbolic system of equations

B _yxd Byl e kv =—iVE) (18)

In the case p = const p*, where x is the ratio of specific heat
coefficients, formulas (17) and (21) take the form

- (1 =M [1 — &k (4 — AYRY)Y]S Y
V— - ( (1 — M/hz)hl [{—h (1 —AYR2)Y (4 — M3)] ) (19)
ds —:f: ( (i —)\S) -~k -—lzlh‘)"(i -—-M’)] )’!’ﬂ

= (1 =20 —k (1 — A%/h2)Y] A

k2 /w1 ye w1 i
(k1=zz;( P a.’) » =7 'T=x—-1’#1)

where A is the magnitude of the relative velocity and a_ is the critical
velocity of sound. If k; < 1, the system (13) is correct for A < 1 and
the system (18) is correct for A > 1. The case k; > 1 is of greater
interest. Then the quantities

{— &y (1 — M2) (1 — AYR2)Y, 1 — ky (1 — A2/n2)Y

which are negative in the neighborhood of A = 0 vanish respectively for
Ay<landA, = h(1- k'=%), where A, > A,. In the interval of velo-
city variation 0<A < A, we have for every A, the elliptic system of
equations (13). If A, < 1, we have for the subsonic interval Ay <A<,
the hyperbolic system of equations (18), and subsequently for the interval
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A, <A <1 the elliptic system of equations (13), and finally for A > 1
sgain the system (18). If A, > 1, the systém (18) is correct for the
intervals A; <A < 1 and A, <A < h, and the elliptic system of equations
(13) for the supersonic interval 1 < A < A,. If

As=1, waa k= (’_{:h:_ﬂv
the system (13) is correct for the whole interval A; <A < h.

Extracting the principal parts of the formulas (19) in the neighbor-
hood of the singular points A; and A, £ 1, we find that in the first case
Vv K = const s~ 1/% and in the second case y K= const s, where s is to be-
computed respectively for A; and A,.

For k = 0 we have the usual equations of Chaplygin. For separate form
ulas p = plp) and values k; a system of equations in Legendre functions
can be found which are more convenient for solution than the system (13).

We will pass from the functions ¢, ¢ to the functions ®, ¥ by means
of the Legendre transformation

d d
0=xa—:+y-§3——@, ‘I’=x%+y%——¢ (20)
We have
zzd)u.=—-‘{’t’ y=0v.=‘l’r (,-=9_9§Q£_.t.___Sano) 1)

In the independent variables s, 8 the system (21) has the following
form (see, for instance, [71])

H__yR® R e ® (r_yx[L])

Approximate and exact methods of solution of the Chaplygin equations
can be used for the solution of problems of a given flow of gas in a
magnetic field. For the approximations one must use a closure condition.
For instance, if in the order of the approximation some other function
f(s) is taken instead of the rigorous dependence on v K(s), after sub-
stituting the function f(s) in place of v K in Equation (14) we obtain
an equation for determining the functions P(s) and Q(s). We obtain the
dependence of p on w in the parametric formp = p(s), w = »(s) by means
of the formulas w* = P~ 1, p* = P/Q and the formulas (8) and (9).
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